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Strategy-proof social choice functions are characterized for societies where the
space of alternatives is any full dimensional compact subset of a Euclidean space and
all voters have generalized single-peaked preferences. Our results build upon and
extend those obtained for cartesian product ranges by Border and Jordan (1983). By
admitting a large set of non-Cartesian ranges, we give a partial answer to the major
open question left unresolved in this pioneering article. We prove that our class is
composed by generalized median voter schemes which satisfy an additional condi-
tion, called the intersection property [Barberà, Massó, and Neme (1997)]. Journal
of Economic Literature Classification Number: D71. © 1998 Academic Press

1. INTRODUCTION

For societies with n agents facing a set Z of alternatives, a social choice
function determines what alternative to choose for each possible profile
of preferences. The Gibbard–Satterthwaite Theorem [see Gibbard (1973)
and Satterthwaite (1975)] establishes that all social choice functions whose
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range contains more than two alternatives are either dictatorial or manip-
ulable. This clear-cut conclusion is obtained at some costs: one of them is
the assumption of universal domain, according to which all possible prefer-
ences over alternatives are admissible for all agents.

In many cases, the nature of the social decision problem induces a specific
structure on the set of alternatives, and this structure suggests, in turn, some
restrictions on the set of admissible individual preferences. It is then natural
to investigate how changed is the conclusion of the Gibbard–Satterthwaite
Theorem when social choice functions are only required to operate on a
restricted preference domain.

Different authors have investigated the possibility of designing nondic-
tatorial, strategy-proof social choice functions for specific environments.
Some domain restrictions like continuity, are not sufficient to avoid the
incompatibility between these two desirable properties [see Barberà and
Peleg (1990)]. Others allow for more positive results. Moulin (1980), Spru-
mont (1991), and Alcalde and Barberà (1994) identify situations admitting
efficient, nondictatorial, and strategy-proof social choice functions. Their
results apply, respectively, to the choice of level for one public good, the
distribution of a fixed amount of private good, and the stable solution of
matching problems, under appropriate domain restrictions. Many other en-
vironments allowing for nondictatorial and strategy-proof but not necessar-
ily efficient social choice functions have been studied: see, for example, Ser-
izawa (1996) on economies with one public and one private good, Barberà
and Jackson (1995) on exchange economies, Gibbard (1977), and Barberà,
Bogomolnaia, and van der Stel (1997) on the choice of lotteries as social
outcomes.1

Another family of interesting environments arises when alternatives can
be described as points in the Euclidean space. In this paper we reconsider
the possibility of designing strategy-proof social choice functions when the
set of feasible alternatives is a full dimensional compact set in <m and pref-
erences satisfy an appropriate version of single-peakedness.2 This question
was addressed in a pioneering paper by Border and Jordan (1983), follow-
ing Moulin’s (1980) initial analysis of the one-dimensional case. Border and
Jordan’s results refer to the case where any element of <m can be a possi-
ble outcome, and all star-shaped and separable preferences are admissible.
Their results are important, as they show the existence of a large class of
nondictatorial and strategy-proof social choice functions for meaningful, yet

1We make no attempt to be exhaustive. For accounts of recent research on strategy-
proofness in restricted domains, the reader is referred to Sprumont (1995) or Barberà (1997).

2Our full dimensionality condition excludes cases where the set of alternatives is finite. For
analysis of the m-dimensional finite alternatives case see Barberà, Sonneschein, and Zhou
(1991), Barberà, Gul, and Stacchetti (1993), and Barberà, Massó, and Neme (1997).
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restricted domains of preferences. Specifically, this class of functions, which
we call generalized median voter schemes, can be informally described as
follows:3 (1) each agent declares her preferred alternative, each of these
ideal points is projected onto each of the coordinate axes, one point is
chosen in each coordinate, and then these coordinate values form the so-
cial outcome vector; (2) moreover, the choice within each coordinate axis
is based on some variant of the median voter rule, which may vary from
one dimension to another. The first part of this description reveals that
strategy-proof rules in these environments must be decomposable, a fact
that extends to more general cases, as shown by Le Breton and Sen (1995).
The need to use generalized median voter rules on each dimension is im-
plied by single-peakedness.

The results of Border and Jordan (1983) were marred by the assumption
that the range of the functions was the whole Euclidean space or, equiv-
alently, by a unanimity requirement. In the words of Border and Jordan,
“the most obvious (open) question (in their paper) is: what happens if the
unanimity assumption is dropped? Dropping the unanimity assumption is
equivalent to restricting the range of the mechanism, and in economic en-
vironments such restrictions arise as feasibility constraints.”

Before addressing this open question, let us qualify the statement. Since
Border and Jordan (1983) admit preferences with ideals on any point in <m,
it is certainly the case that the range of any function defined on their ad-
missible profiles and respecting unanimity must coincide with <m, and that
any function whose range is a proper subset of <m must violate unanimity,
as long as all the above preferences are admissible. Remark, however, that
some restrictions on the range (and thus, some violations of unanimity),
are easy to deal with. Take, in particular, any Cartesian product of one in-
terval in each dimension, and let each agent vote for her preferred element
in this set. The same class of procedures which were strategy-proof when
any point in <m were admissible will still be strategy-proof when the range
is a Cartesian product and agents are no longer asked to vote for their pre-
ferred alternative, but for their best among those which are feasible (i.e.,
in the a priori fixed range). This first remark shows that introducing re-
strictions, or equivalently, dropping unanimity, need not always make our
analysis of strategy-proof rules any harder. It also leads us to a second re-
mark: when the set of admissible alternatives is not a Cartesian product,
then new difficulties can arise, even if we maintain the unanimity assump-
tion by reducing our set of admissible preferences to those whose ideals
are always feasible.

3See Border and Jordan (1983), Barberà, Gul, and Stacchetti (1993), Serizawa (1994), and
Barberà, Massó, and Neme (1997) for alternative descriptions. Section 2 contains a formal
definition.



strategy-proof voting 275

The purpose of our paper is to carefully analyze situations where the
set of feasible alternatives is not necessarily Cartesian, to show the na-
ture of the new difficulties that arise in this case, and to characterize the
strategy-proof social choice functions which can be defined given a set of
feasible alternatives. We provide a full characterization for the case where
the domain of admissible preferences is also restricted accordingly, thus al-
lowing the candidate social choice functions to respect unanimity even if
their range does not cover all of <m. This characterization provides a sat-
isfactory analysis of one of the implicit issues raised by Border and Jordan
(1983). Namely, the type of difficulties added to the analysis of strategy-
proof rules in the presence of exogenous constraints. Our results show that
new interesting issues arise even if we reduce the domains of admissible
preferences in order to respect unanimity. But we certainly do not give a
full answer to Border and Jordan (1983), since we do not address the com-
pounded difficulties that arise when the range is restricted and the una-
nimity requirement is dropped (or, equivalently, when the set of admissible
alternatives is reduced but the set of admissible preferences is not).

The starting point of our analysis is thus the distinction between conceiv-
able and feasible alternatives. Some conceivable alternatives may never be
chosen because they are unfeasible, and this may change our conclusions
regarding the possibility of designing nondictatorial, strategy-proof social
choice functions. In order to address this question in a noncircular way,4

we concentrate on functions whose range coincides with the set of feasi-
ble alternatives, and we simply restrict these ranges to be compact and to
satisfy a full dimensionality condition.

Since the starting point of our analysis is a given set of feasible alterna-
tives Z, we concentrate on preferences defined on this set. Yet, our defini-
tions of admissible preferences will still appeal to the underlying distinction
between the set of conceivable alternatives (all points in <m) and the set
Z ⊂ <m of feasible ones. Specifically, we work on the domain of prefer-
ences which are restrictions to the set Z of multidimensional single-peaked
preferences on <m, with the added requirement that the unconstrained
maximal element of these preferences belongs to Z.5 For similar reasons,
we are only interested in social choice functions which assign a feasible
outcome to any profile of admissible preferences over feasible alternatives.

4Given a set Z of alternatives, it is always possible to define social choice functions whose
range is a subset A of Z, even if all elements of Z were feasible. By identifying the range
of our social choice functions with the set of feasible alternatives we avoid discussions over
why a feasible alternative might not be chosen even in the case of unanimity, or what is the
difference between objective and de facto unfeasibility.

5This domain is strongly related to the one considered by Border and Jordan (1983). For
precise comparisons, see Definitions 1–4 and Remark 1 in Section 2.
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Within this setting, we obtain two major results. The first one is that,
regardless of the exact shape of the set of feasible alternatives, any strategy-
proof social choice function must be a generalized median voter scheme.
This part of the result is similar and builds upon the one obtained by Border
and Jordan (1983), but it requires additional work and new techniques of
proof.

Notice that when the feasible set is non-Cartesian, not all generalized
median voter schemes are proper social choice functions, because some of
these schemes can recommend the choice of unfeasible alternatives even
when all agents vote for feasible alternatives. Our second result [in the line
of Barberà, Massó, and Neme (1997) for a finite framework] characterizes
the set of all generalized median voter schemes which are indeed social
choice functions, for each set of feasible alternatives (we call them feasibil-
ity preserving). Border and Jordan (1983) had stated that “it seems unlikely
that a transparent characterization can be developed to cover all range re-
strictions.” Our characterization is based on what we call the intersection
property. This is a condition which guarantees the needed coordination
across decision rules which are used to select the components of the so-
cial outcome in different dimensions. Indeed, it is not a simple condition,
but it can be sharply stated for any kind of range; its implications, however,
must be carefully analyzed for each special case. For some shapes of the
range, the intersection property can only be satisfied by mechanisms which
give some agents a lot of decision power. For other shapes, however, it
leaves room for the use of much nicer voting schemes. At any rate, we can
show that dictatorship is hardly a consequence of strategy-proofness. For
essentially all the ranges under consideration, it is possible to construct so-
cial choice functions which are nondictatorial and strategy-proof: the sharp
conclusion of the Gibbard–Satterthwaite Theorem is not easily recovered
under restricted domains.

The paper is organized as follows. Section 2 contains the notation, defi-
nitions and some preliminary results. In Section 3 we characterize strategy-
proof social choice functions as generalized median voter schemes. Finally,
in Section 4 we show the existence of nondictatorial rules in this class for
general ranges.

2. NOTATION, DEFINITIONS, AND PRELIMINARY RESULTS

Let N = �1; : : : ; n� be a set of agents and M = �1; : : : ;m� be a set of
coordinates. We assume that n;m ≥ 2.6 Let the set Z of alternatives be a

6For the case m = 1, see Moulin (1980).



strategy-proof voting 277

compact subset of the m-dimensional Euclidean space <m endowed with
the L1-norm. That is, for x ∈ <m

�x� = ∑
k∈M
�xk�:

We interpret <m as the set of conceivable alternatives and the set Z as
the set of feasible alternatives. We assume that Z satisfies the following
full-dimensionality requirement: Z = cl�int�Z��, where cl and int denotes
closure and interior, respectively.7

Given A ⊆ <m and k ∈ M , denote the projection of A on the k-th
coordinate by Projk�A�. Given k ∈ M , we simply write Projk�Z� = Zk. To
stress the role of coordinate k we often write the vector z as �zk; z−k�.
Given x ∈ <m and x′ ∈ <m, denote the closed segment connecting x and
x′ by �x; x′�. Given A ⊆ <m, the minimal box containing A is the smallest
Cartesian product set B̂�A� containing the set A. That is,

B̂�A� = ∏
k∈M

[
min Projk�A�;max Projk�A�

]
:

Therefore, B̂�Z� is the smallest box containing the set of alternatives Z.
Preferences are continuous and complete preorders on alternatives. We

shall often abuse language and identify preferences with their continuous
numerical representations. We first recall some conditions for preferences
defined on <m that will be used as reference points. Let Û be the set of all
continuous preferences on <m.

Definition 1. A preference ui ∈ Û is multidimensional single-peaked
on <m if:

(1) It has a unique maximal element τ�ui� ∈ <m (the “top” of ui).
(2) For any z; z′ ∈ <m,[

z′ ∈ B̂(�z; τ�ui��) and z′ 6= z]⇒ [
ui�z′� > ui�z�]:

This is the adaptation to continuous settings of a condition used in Bar-
berà, Gul, and Stacchetti (1993), Serizawa (1995), and Barberà, Massó, and
Neme (1997). Border and Jordan (1983) used the following proper subclass
of preferences on <m.

Definition 2. A preference ui ∈ Û is star-shaped and separable on <m
if:

(1) It has a unique maximal element τ�ui� ∈ <m (the “top” of ui).

7This assumption is required by our techniques of proof. We believe that the essence of the
results would be kept for lower dimensional ranges, but this would require separate arguments.
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(2) For any z ∈ <m, z 6= τ�ui�, and λ ∈ �0; 1�,
ui
(
τ�ui�) > ui(λτ�ui� + �1− λ�z) > ui�z�:

(3) For all k ∈M , and all zk, z′k, z̄−k, and z̃−k we have that[
ui�zk; z̄−k� ≥ ui�z′k; z̄−k�

]⇔ [
ui�zk; z̃−k� ≥ ui�z′k; z̃−k�

]
:

Given the set Z of feasible alternatives we denote by UZ the set of all
continuous preferences on Z.

Definition 3. A preference ui ∈ UZ is multidimensional single-peaked
if there exists ûi ∈ Û such that:

(1) ûi is multidimensional single-peaked on <m and ûi�z� = ui�z� for
all z ∈ Z.

(2) τ�ûi� ∈ Z.

Definition 4. A preference ui ∈ UZ is star-shaped and separable if
there exists ûi ∈ Û such that:

(1) ûi is star-shaped and separable on <m and ûi�z� = ui�z� for all
z ∈ Z.

(2) τ�ûi� ∈ Z.

Let P ⊂ UZ be the set of all multidimensional single-peaked preferences
and let P∗S ⊂ UZ be the set of all star-shaped and separable preferences.

Notice that Definitions 3 and 4 include two parts each: (1) requires that a
preference satisfying property α on Z should come from restricting a pref-
erence satisfying the same condition α on <m. Condition (2) is less natural,
and requires that the original preference on <m should be saturated at a
point in Z. This is a limitation of our analysis, but it allows us to concen-
trate on the consequences of defining social choice functions on any kind
of range, while retaining the unanimity assumption, as already discussed in
the Introduction.

Remark 1. P∗S«P .8

This remark is relevant for comparison with Border and Jordan (1983),
since we work with multidimensional single-peaked preferences, while they
consider star-shaped and separable preferences.

When we want to emphasize the role of coalition S ⊂ N we write
�uS; u−S� to represent the utility profile u = �u1; : : : ; un� ∈ Un

Z , where

8Notice that this inclusion holds when preferences are defined on the full <m and ideals
can be any point in <m, and thus also when preferences are defined on a set Z and their ideals
are restricted to belong to this set Z.



strategy-proof voting 279

uS = �ui�i∈S ∈ Us
Z and u−S = �ui�i∈N\S ∈ Un−s

Z .9 Given ui ∈ UZ and z ∈ Z,
define the upper contour set UC�ui; z� by

UC�ui; z� = {z′ ∈ Z �ui�z′� ≥ ui�z�};
the strict upper contour set SUC�ui; z� by

SUC�ui; z� = {z′ ∈ Z �ui�z′� > ui�z�};
and the lower contour set LC�ui; z� by

LC�ui; z� = {z′ ∈ Z �ui�z′� ≤ ui�z�}:
Given the set Z, let V ⊂ UZ denote any arbitrary subset of preferences

having a unique maximal element on Z. Obviously, P or any subset of P ,
are examples of such subsets.

A social choice function F on V ⊆ UZ is a function from V n to Z.
Since our primitives are preorders we only restrict attention to social choice
functions which are invariant to the choice of their utility representation.

Definition 5. A social choice function F : V n → Z respects unanimity
if for any u ∈ V n and for any z ∈ Z,[∀i ∈ N; τ�ui� = z]⇒ [

F�u� = z]:
Throughout the paper we assume that F respects unanimity and there-

fore it is onto Z.
A social choice function is strategy-proof if it is always in the interest of

agents to report their preferences truthfully. Formally,

Definition 6. A social choice function F : V n → Z is manipulable on
V n if there exist u = �u1; : : : ; un� ∈ V n, i ∈ N and ûi ∈ V such that
ui�F�ûi; u−i�� > ui�F�u��. A social choice function F : V n→ Z is strategy-
proof on V n if it is not manipulable on V n.

Definition 7. A social choice function F : V n → Z is tops-only if for
any u ∈ V n and for any û ∈ V n,[∀i ∈ N; τ�ui� = τ�ûi�]⇒ [

F�u� = F�û�]:
In what follows, we define generalized median voter schemes. These are

based on a natural extension of the basic idea of the median voter rule,
and their definition uses the auxiliary concept of right (or left) coalition
systems.

9The notation n− s stands for the cardinality of the set N\S. In general, we denote sets by
capital letters and their cardinality by the corresponding small letters.
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Definition 8. A right (left)-coalition system on Zk ≡ �ak; bk� is a cor-
respondence Wk that assigns to every zk ∈ Zk a collection Wk�zk� of coali-
tions satisfying the following conditions:

(1) Voter sovereignty: For all zk ∈ �ak; bk� (�ak; bk�), Wk�zk� 6= Z,
Z /∈ Wk�zk�, and Wk�ak� = 2N\Z �Wk�bk� = 2N\Z�.

(2) Coalition monotonicity: If W ∈ Wk�zk� and W ⊂ W ′, then W ′ ∈
Wk�zk�:

(3) Outcome monotonicity: If z′k < (>)zk and W ∈ Wk�zk�, then
W ∈ Wk�z′k�.

(4) Upper semicontinuity: For any W ⊆ N , any zk ∈ Zk and any
sequence �ztk� ⊆ Zk such that limt→∞ z

t
k = zk,[∀t;W ∈ Wk�ztk�

]⇒ [
W ∈ Wk�zk�

]
:

A family R of right-coalition systems on B̂�Z� = ∏m
k=1 Zk is a collection

�Rk�mk=1 where each Rk is a right-coalition system on Zk. Similarly, a fam-
ily L of left-coalition systems on B̂�Z� = ∏m

k=1 Zk is a collection �Lk�mk=1
where each Lk is a left-coalition system on Zk. Now given a family of
right coalition systems, let us describe how to construct its associated gen-
eralized median voter scheme (a parallel description holds for left coali-
tion systems). Take the family R and a profile u. For each dimension k,
let �τk�u1�; : : : ; τk�un�� be the vector of tops projected into dimension k.
Now, choose the k-th component Fk�u� of the social outcome to be the
largest value such that the set of agents voting for values above it be-
long to the right coalition at Fk�u�. In this way, given a preference profile
u = �u1; : : : ; un� and a right-coalition system R = �Rk�mk=1, one selects the
social outcome F�u� = �F1�u�; : : : ; Fm�u��. Formally,

Definition 9. Let Z be the set of alternatives and R = �Rk�mk=1 �L =
�Lk�mk=1� a family of right (left)-coalition systems on B̂�Z�. The generalized
median voter scheme induced by �Z;R� is the function F : V n → B̂�Z�
defined as follows: for every u ∈ V n and every k ∈M

Fk�u� = max
{
zk ∈ Zk

∣∣{i ∈ N∣∣τk�ui� ≥ zk} ∈ Rk�zk�
}(

Fk�u� = min
{
zk ∈ Zk

∣∣{i ∈ N � τk�ui� ≤ zk} ∈ Lk�zk�
})
:

Remark 2. By (4) in the definition of right-coalition systems, the out-
come Fk�u� is well determined since max�zk ∈ Zk � �i ∈ N � τk�ui� ≥ zk� ∈
Rk�zk�� exists. Notice that by definition generalized median voter schemes
are tops-only. When a coalition W ⊆ N is in Rk�zk� (Lk�zk�) for k ∈ M
and zk ∈ Zk, the coalition is said to be right (left) winning for zk.
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Notice that, in general, the image of a generalized median voter scheme
belongs to B̂�Z� but not necessarily to Z (see Example 1 below). Thus,
generalized median voter schemes are not always social choice functions.
An important particular case arises when Z is a Cartesian product. Then,
B̂�Z� = Z, and any generalized median voter scheme is a social choice
function. Border and Jordan (1983) analyzed the particular case within this
class, when Z equals <m. What is important for their result is the fact
that Z is a Cartesian product, and we formulate their result in this slightly
generalized form.

Theorem 2.1 (Border and Jordan). Let the set Z of alternatives be box-
shaped. A social choice function is strategy-proof on �P∗S �n, the set of star-
shaped and separable preferences, if and only if it is a generalized median
voter scheme.

Since we choose to work with multidimensional single-peaked prefer-
ences, rather than star-shaped and separable, it is worth checking that a
result parallel to Border and Jordan’s also holds for our domain. This is
the contents of Theorem 2.2 below. Notice that, even if P∗S«P , none of
the two results is implied by the other.

Theorem 2.2. Let the set Z of alternatives be box-shaped. A social choice
function is strategy-proof on Pn, the set of multidimensional single-peaked
preferences, if and only if it is a generalized median voter scheme.

Proof. To show that a generalized median voter scheme is strategy-proof
on Pn is straightforward, and therefore it is omitted. Let a social choice
function F be strategy-proof on Pn. We will establish that F is a generalized
median voter scheme. Let F̂ be the restriction of F to �P∗S �n. Since F̂ is
strategy-proof on �P∗S �n, it follows from Theorem 2.1 that F̂ is a generalized
median voter scheme. Now, we have only to show that for any u ∈ Pn and
û ∈ �P∗S �n, if τ�ui� = τ�ûi� for each i ∈ N , F�u� = F�û�.

Let u ∈ Pn and û ∈ �P∗S �n be such that for each i ∈ N , τ�ui� = τ�ûi�.
To get a contradiction, suppose that F�u1; û−1� 6= F�û�. If F�û� /∈
B̂��τ�û1�, F�u1; û−1���, there is ũ1 ∈ P∗S such that τ�ũ1� = τ�û1� and
ũ1�F�u1; û−1�� > ũ1�F�û��. Since F�ũ1; û−1� = F�û�, this contradicts
strategy-proofness for agent 1. Thus, F�û� ∈ B̂��τ�û1�, F�u1, û−1���.
Since u1 ∈ P , u1�F�û�� > u1�F�u1; û−1��, contradicting strategy-proof-
ness. Therefore, F�u1; û−1� = F�û�. By repeating the same argument for
i = 2; : : : ; n, we have that F�û� = F�u�.

Let us now return to our main concern: the extension of the above re-
sults to non-Cartesian ranges. As already noted, when Z«B̂�Z� nothing
guarantees that the vector �F1�u�; : : : ; Fm�u�� selected throughout an arbi-
trary family of right-coalition systems R = �Rk�mk=1 will be an element
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of Z.10 The following example shows that not any generalized median
voter scheme, as defined previously, will preserve feasibility if Z is not
box-shaped.

Example 1. Consider the case where the set of coordinates is M =
�1; 2�, the set of alternatives is Z = �z ∈ <2

+ � z1 + z2 ≤ 1�, and the set of
agents is N = �1; 2; 3�. Notice that Z«B̂�Z� = �z ∈ <2

+ � z1 ≤ 1; z2 ≤ 1�.
Let R = �R1;R2� be the family of right-coalition systems on B̂�Z� where
�W ∈ R1�z1�� ⇔ �#W ≥ 2� for all z1 ∈ �0; 1�, �W ∈ R2�z2�� ⇔ �#W ≥ 1�
for all z2 ∈ �0; 1�, and R1�0� = R2�0� = 2N\Z.11 Consider now any pro-
file u = �u1; u2; u3� ∈ P3 such that τ�u1� = �5/8; 2/8�, τ�u2� = �4/8; 2/8�,
and τ�u3� = �2/8; 5/8�. Obviously, τ�ui� ∈ Z for all i = 1; 2; 3. Now, since
�τ1�u1�; τ1�u2�; τ1�u3�� = �5/8; 4/8; 2/8� and �τ2�u1�; τ2�u2�; τ2�u3�� =
�2/8; 2/8; 5/8� we have that F�u� = �4/8; 5/8� /∈ Z.

Therefore, we need some additional property to guarantee that a gener-
alized median voter scheme always selects vectors in Z. In order to state
this property, it is useful to understand the relationship between right and
left coalition systems, Rk and Lk, that select the same outcome for all
�τk�u1�; : : : ; τk�un��.

Given Rk, define L∗k as follows:

L∗k�zk� =
{
W ∈ 2N � ∀z′k > zk;∀W ′ ∈ Rk�z′k�;W ∩W ′ 6= Z

}
:

It is easy to see that Rk and Lk will select the same outcome for all
�τk�ui��i∈N if and only if Lk = L∗k.

For any pair of vectors y; z ∈ B̂�Z�, let M+�y; z� = �k ∈ M � zk > yk�
and M−�y; z� = �k ∈ M � zk < yk� be the set of dimensions in which the
components of z are strictly greater or smaller than those of y, respectively.

Definition 10. A family R = �Rk�mk=1 of right-coalition systems on
B̂�Z� has the intersection property for Z if for any y ∈ B̂�Z�\Z, and any
finite subset �z1; : : : ; zT� ⊂ Z

T⋂
t=1

{[ ⋃
k∈M+�y;zt�

lk�yk�
]⋃[ ⋃

k∈M−�y;zt�
rk�yk��

}
6= Z

for every rk�yk� ∈ Rk�yk� with k ∈ ⋃T
t=1 M

−�y; zt� and every lk�yk� ∈
L∗k�yk� with k ∈ ⋃T

t=1 M
+�y; zt�.

10See Barberà, Massó, and Neme (1997) for a detailed discussion of the feasibility problem
in the context of finite sets of alternatives.

11This is a particular case, called voting by quota, where winning coalitions are constant
and defined just by its cardinality. In this example we would say that the generalized median
voter scheme F defined by those right-coalition systems is an scheme of voting by quota 2 in
the first coordinate and voting by quota 1 in the second one.
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A generalized median voter scheme induced by �Z;R� satisfies the inter-
section property if and only if R has the intersection property for Z.

The following proposition gives a necessary and sufficient condition for
a generalized median voter scheme induced by �Z;R� to be a social choice
function. We state it without proof since the proof of Theorem 1 in Bar-
berà, Massó, and Neme (1997) for the finite case can be straigthtforwardly
adapted to our setting.

Proposition 1. A generalized median voter scheme induced by �Z;R� is
a social choice function if and only if it satisfies the intersection property.

To illustrate the intersection property, consider again Example 1. We will
check that the generalized median voter scheme induced by �Z;R� defined
there does not satisfy the intersection property. Consider the vectors y =
�3/4; 3/4� ∈ B̂�Z�\Z, z1 = �3/4; 1/4� ∈ Z, and z2 = �1/8; 3/4� ∈ Z. In
this case M+�z1; y� = �k ∈ M � z1

k > yk� = Z, M−�z1; y� = �k ∈ M � z1
k <

yk� = �2�, M+�z2; y� = �k ∈ M � z2
k > yk� = Z, and M−�z2; y� = �k ∈

M � z2
k < yk� = �1�. Then, M+�z1; y� ∪M+�z2; y� = Z and M−�z1; y� ∪

M−�z2; y� = �1; 2�. But �1; 2� ∈ R1�y1�, �3� ∈ R2�y2�, and �1; 2� ∩ �3� =
Z, which is a violation of the intersection property. However, as we will
see in Example 2 of Section 4, if we replace R2, the right coalition system
of the second dimension, by R′2 where �W ∈ R′2�z2�� ⇔ �#W ≥ 2� for all
z2 ∈ �0; 1�, and R′2�0� = 2N\Z, then R′ = �R1;R

′
2� has the intersection

property for Z.

3. THE CHARACTERIZATION RESULT

We can now state and prove the main result of the paper.

Theorem 3.1. A social choice function is strategy-proof on Pn if and only
if it is a generalized median voter scheme satisfying the intersection property.

The proof of Theorem 3.1 uses two interesting facts which are presented
as Lemmata and the following concept of option sets.

Given a social choice function F : V n→ Z, a coalition N ′«N and uN
′ =

�ui�i∈N ′ ∈ V n′ , define the option set left by uN
′

as

σF�uN ′ � = {z ∈ Z � there exists u−N
′ ∈ V n−n′ such that F�uN ′; u−N ′ � = z}:

Lemma 1 below says that if F is strategy-proof on an arbitrary domain
V n ⊆ Un

Z ,12 z is among the options left by uN
′
, and z is maximal for all

agents in N\N ′, then z must be chosen by F . Notice that it implies respect
for unanimity when N ′ = Z. We omit the proof, which is straightforward.

12Notice that single-peakedness does not play any role here.
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Lemma 1. Let F : V n → Z be a strategy-proof social choice function. Let
N ′ ⊆ N , uN

′ ∈ V n′ , z ∈ σF�uN ′ � and u−N
′ ∈ V n−n′ be such that for each

j ∈ N\N ′, τ�uj� = z. Then F�u� = z.

Lemma 2 states that if F is strategy-proof on the domain of multidi-
mensional single-peaked preferences Pn and for some profile the maximal
alternatives of all agents lie in a box within the range, then the outcome
must belong to that box. We will say then that F satisfies the Weak Minimal
Box Property.

Lemma 2 (Weak Minimal Box Property). Let F : Pn → Z be a strategy-
proof social choice function, u ∈ Pn, and B̂��τ�ui� � i ∈ N�� ⊆ Z. Then
F�u� ∈ B̂��τ�ui� � i ∈ N��.

Proof. Let u ∈ Pn, z = F�u� and k ∈ M . We have to show that
mini∈N�τk�ui�� ≤ zk ≤ maxi∈N�τk�ui��. By contradiction, suppose
not. Without loss of generality, we may assume that k = 1 and z1 <
mini∈N�τ1�ui�� = τ1�u1�. Let z∗ ∈ <m be such that z∗1 = mini∈N�τ1�ui��;
and for each k′ ∈ M , z∗k′ = mini∈N�τk′ �ui�� if zk′ < mini∈N�τk′ �ui��,
z∗k′ = zk′ if mini∈N�τk′ �ui�� ≤ zk′ ≤ maxi∈N�τk′ �ui��, z∗k′ = maxi∈N�τk′ �ui��
if zk′ > maxi∈N�τk′ �ui��. Since z∗ ∈ B̂��τ�ui� � i ∈ N��, it follows
from B̂��τ�ui� � i ∈ N�� ⊆ Z that z∗ ∈ Z. Note that for any i ∈ N ,
� z − τ�ui� �=� z − z∗ � + � τ�ui� − z∗ �. Thus for any i ∈ N , there
is ûi ∈ P such that τ�ûi� = z∗ and LC�ui; z� ∩ UC�ûi; z� = �z�. Then
the fact that agent 1 can not manipulate F and F�u� = z together imply
F�û1; u−1� = z. Repeating this argument for i = 2; : : : ; n, we get F�û� = z.
But since z∗ ∈ Z, this contradicts respect for unanimity, and by Lemma 1,
strategy-proofness of F .

Proof of Theorem 3.1. Since the “if” part is straightforward, we will
show the converse. Let F be a strategy-proof social choice function. To
establish that F : Pn → Z is a generalized median voter scheme on Z we
proceed as follows. For each z in the interior of Z, we select a box con-
taining z and strictly contained in Z (here we use the full dimensionality
of Z). Lemma 2 allows us to apply Theorem 2.2 “locally” to each one of
these boxes, whose union constitutes the interior of Z. From this we get a
collection of generalized median voter schemes, one for each box, and we
use an overlapping argument to show that, in fact, they are all restrictions
of a common generalized median voter scheme defined on the interior
of the minimal box containing Z. Finally, we use continuity to show that
this generalized median voter scheme still applies when we consider the
boundaries of Z, as well as the interior. Notice that although Theorem 3.1
extends Border and Jordan’s result, our proof uses their result initially,
when we apply it locally to the boxes associated to each z. Therefore, our
proof builds upon theirs, and is not an alternative to it.
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To proceed formally with the proof, let I be the interior of Z and PI =
�ui ∈ P � τ�ui� ∈ I�, and let FI be the restriction of F to �PI�n.

Claim. FI is a generalized median voter scheme on I.

Proof of the claim. Let B be a nondegenerate box contained in Z
and PB = �ui ∈ P � τ�ui� ∈ B�. Then by the weak minimal box prop-
erty (Lemma 2), for any u ∈ Pn

B, F�u� ∈ B; and by respect for unanimity
(Lemma 1), for any z ∈ B, there is u ∈ Pn

B such that F�u� = z. Thus the
restriction of F to Pn

B is considered to be a social choice function with a
box-shaped set of alternatives. Then, Theorem 2.2 is applied, which im-
plies that the restriction of F to Pn

B is a generalized median voter scheme
on B, so that there is a family of right-coalition systems associated with
it, call it RB. For any nondegenerate box in Z, the associated family of
right-coalition systems is derived similarly. For any z ∈ I, there is a non-
degenerate box B ⊆ Z such that z is in the interior of B, thus for each
k ∈ M , a set of winning coalitions RB

k�zk� is derived. We establish (3)
(outcome monotonicity) between the associated lists of winning coalitions.

Let k ∈ M , z ∈ I and z′ ∈ I be such that zk ≥ z′k. Let B and B′ be
nondegenerated boxes in Z such that z and z′ are in the interiors of B and
B′, respectively. Let RB

k�zk� and RB′
k �z′k� be the lists of winning coalitions

associated with B and B′, respectively. Let W ∈ RB
k�zk�. We want to show

W ∈ RB′
k �z′k�.

Let x ∈ B, y ∈ B, x′ ∈ B′ and y ′ ∈ B′ be such that yk < zk < xk, y ′k <
z′k < x

′
k, y−k = x−k, and y ′−k = x′−k. Let u ∈ Pn

B be such that τ�ui� = x for
any i ∈ W and τ�ui� = y for any i /∈ W . Let u′ ∈ Pn

B′ be such that for any i
and j ∈ W , u′i = u′j , τ�u′i� = x′, and u′i�z′′� > ui�z′′′� for any z′′ ∈ Z and
z′′′ ∈ Z with z′′′k < z

′
k and x′k ≤ z′′k, and τ�u′i� = y ′ for any i /∈ W . Since W ∈

RB
k�zk�, Fk�u� ≥ zk. Without loss of generality, let N\W = �1; : : : ; n−w�

and W = �n−w + 1; : : : ; n�, where w = #W .
We will show that Fk�u′1; u−1� ≥ zk. By contradiction, suppose not.

Then there is û1 ∈ PB such that τ�û1� = y and û1�F�u′1; u−1�� > û1�z′′�
for z′′ ∈ Z with z′′k ≥ zk. Since generalized median voter schemes are
tops-only, F�û1; u−1� = F�u�. Thus û1�F�u′1; u−1�� > û1�F�û1; u−1��, con-
tradicting strategy-proofness. Therefore Fk�u′1; u−1� ≥ zk. Next we will
show that if 2 /∈ W , Fk�u′1; u′2; u−�1; 2�� ≥ zk. Let 2 /∈ W . Suppose not.
Then there is û2 ∈ PB such that τ�û2� = y and û2�F�u′1; u′2; u−�1; 2��� >
û2�z′′� for z′′ ∈ Z with z′′k ≥ zk. Since generalized median voter
schemes are tops-only, F�û2; u−2� = F�u�. Thus we can show that
Fk�u′1; û2; u−�1; 2�� ≥ zk in the same way we showed that Fk�u′; u−1� ≥ zk.
Thus û2�F�u′; u′2; u−�1; 2��� > û2�F�u′1; û2; u−�1; 2���, contradicting
strategy-proofness. Therefore Fk�u′1; u′2; u−�1; 2�� ≥ zk. Repeating this
argument for i = 3; : : : ; n−w, we can show that Fk�u′N\W ; uW � ≥ zk:
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Since for any i ∈ W , u′i�z′′� > ui�z′′′� for any z′′ ∈ Z and z′′′ ∈ Z with
z′′′k < z′k and x′k ≤ z′′k, if Fk�u′N\W ; u′n−w+1; uW \�n−w+1�� < z′k, then it fol-
lows that u′n−w+1�F�u′N\W ; u′n−w+1; uW \�n−w+1��� < u′n−w+1�F�u′N\W ;
uW ��. This contradicts strategy-proofness. Therefore Fk�u′N\W ; u′n−w+1;
uW \�n−w+1�� ≥ z′k. By the same condition as above, Fk�u′N\W ; u′n−w+1;
u′n−w+2; uW \�n−w+1;n−w+2�� ≥ z′k because u′n−w+2 = u′n−w+1. Repeating this
argument for i = n− w + 3; : : : ; n, we can show that Fk�u′� ≥ z′k. Accord-
ingly W ∈ RB′

k �z′k�. It is easy to check that the other conditions required
for a coalition system hold. Hence FI is a generalized median voter scheme
on I, which proves the claim.

To finish the proof of the theorem, let G be a generalized median
voter scheme on Z such that for any u ∈ �PI�n, G�u� = FI�u�. Since
the family of right coalition systems are upper semicontinuous and sat-
isfy outcome monotonicity, G is unique. We need to establish that
F = G. Let u ∈ Pn. We want to show that F�u� = G�u�. Suppose not.
We derive a contradiction by induction. When τ�ui� ∈ I for all i ∈ N ,
F�u� = G�u�. As induction hypothesis, assume that when the number of
agents whose top elements are in Z\I is less than n′�≤ n�, F�u� = G�u�.
Let the number of agents whose top elements are in Z\I be equal to
n′. Without loss of generality, we may let that τ�u1� ∈ Z\I. Since Z
is compact and has full dimension, there is a sequence �û1

t �∞t=1 such
that û1

t ∈ PI for all t ≥ 1 and τ�û1
t � goes to τ�u1� as t goes infinity.

It follows from the induction hypothesis that F�û1
t ; u
−1� = G�û1

t ; u
−1�

for all t. Since G is continuous, limt→∞ F�û1
t ; u
−1� = G�u�. Note that

G�u� ∈ B̂��τ�u1�; F�u��� or G�u� /∈ B̂��τ�u1�; F�u���. First consider
the case that G�u� ∈ B̂��τ�u1�; F�u���. Since F�u� 6= G�u� implies
u1�G�u�� > u1�F�u��, it follows from limt→∞ F�û1

t ; u
−1� = G�u� that

u1�F�û1
t ; u
−1�� > u1�F�u�� for t sufficiently large. This is a contradiction to

strategy-proofness. Next consider the case where G�u� /∈ B̂��τ�u1�; F�u���.
Since limt→∞ F�û1

t ; u
−1� = G�u�, F�û1

t ; u
−1� /∈ B̂��τ�u1�; F�u��� for t

sufficiently large. Then there is ũ1 ∈ P such that τ�ũ1� = τ�û1
t � and

ũ1
t �F�u�� > ũ1

t �F�û1
t ; u
−1��. Since G is tops-only, F�ũ1

t ; u
−1� = F�û1

t ; u
−1�.

Thus ũ1
t �F�u�� > ũ1

t �F�ũ1
t ; u
−1��. This is a contradiction to strategy-

proofness.

4. THE EXISTENCE OF NONDICTATORIAL SOCIAL CHOICE
FUNCTIONS FOR GENERAL RANGES

The shape of the set of alternatives Z will determine the subclass of
generalized median voter schemes which can actually be a social choice
functions onto this set. Specifically, this will only hold for schemes which
satisfy the intersection property, a condition whose bite depends on the
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shape of Z. In this section we present a set of examples to illustrate the
fact that, although restrictive, the intersection property may allow for some
reasonable schemes. Moreover, we show by example that it will not in gen-
eral precipitate the existence of full dictators.

We start by showing that, when Z is a “triangular” set, then there ex-
ist anonymous voting schemes which are social choice functions onto Z.
We are intentionally avoiding the “budget set” vocabulary because it may
suggest a setting where preferences over the underlying universal set of al-
ternatives are among other things monotonic. Remember that here we are
always dealing with preferences saturated on the set Z.

Example 2. Consider the family of problems where the set of feasible
alternatives Z can be described as a “triangular” set; that is, given an strictly
positive vector x = �x1; : : : ; xm� ∈ <m++, and an strictly positive number
X > 0, the set of feasible alternatives is defined by

Z =
{
z ∈ <m+

∣∣∣∣ m∑
k=1

xkzk ≤ X
}
:

Notice again that Z«B̂�Z� = �z ∈ <m+ � zk ≤ X/xk for all k = 1; : : : ;m�.13

The scheme of voting by quota Q, where 1 ≤ Q ≤ n, can be defined by
the family of right-coalition systems R = �Rk�mk=1 on B̂�Z�, where for all
k = 1; : : : ;m,[

W ∈ Rk�zk�
]⇔ [

#W ≥ Q] for zk ∈
(
0;X/xk

]
;

and

Rk�0� = 2N\Z:
Now, to determine the values of Q for which R has the intersection prop-
erty for Z, notice that it is sufficient to look at the property only for any
y ∈ B̂�Z�\Z such that y � 0 and for the subset of feasible alternatives
�z1; : : : ; zm� ⊂ Z, where for all t = 1; : : : ;m, the vector zt is defined as
follows: ztk = yk if t = k, and ztk = 0 if t 6= k.14 In this case, and since yk > 0
for all k = 1; : : : ;m, we have that M+�y; zt� = Z and M−�y; zt� = M\�t�
for all t = 1; : : : ;m. Therefore, the intersection property says that

m⋂
t=1

{ ⋃
k∈M\�t�

rk�yk�
}
6= Z

for every rk�yk� ∈ Rk�yk�, which implies, by an induction argument on m,
that mQ > �m − 1�n. For instance, if m = 2 and n = 3, as in Example 1,

13The case considered in Example 1 is a “triangular” set for m = 2 and x1 = x2 = X = 1.
14See Barberà, Massó, and Neme (1997) for a full discussion of this sufficiency.
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Q = 2 and Q = 3 are the two quotas satisfying the intersection property
for Z. In the other hand, for large m and n smaller than m, the unique
quota satisfying the intersection property for Z is Q = n; that is, unanimity
on the right (or vetoer on the left).

The preceding example is quite positive, since it gives equal power to all
agents and it is thus very far from dictatorship. Yet, it may require almost
unanimity to change decisions at all levels and for all dimensions. Our next
example will exhibit another family of rules, still defined on “triangular”
sets. Here we have freedom to choose any structure for the coalition sys-
tems, on some cartesian subset Z̄ of the range Z, while requiring unanimous
agreement to make decisions which would lead to outcomes outside Z̄.

Example 3. Suppose now that m = 2 and the set of feasible alter-
natives is Z = ��z1; z2� ∈ <2

+ �x1z1 + x2z2 ≤ X� given x1, x2, X > 0.
Now, choose any �z̄1; z̄2� ∈ Z, and consider any family of right-coalition
systems �R1;R2� on �0;X/x1� × �0;X/x2� such that R1�z1� = �N� for
z1 ∈ �z̄1;X/x1� and R2�z2� = �N� for z2 ∈ �z̄2;X/x2�. Then, the gener-
alized median voter scheme induced by �Z;R� is a social choice function
F onto Z. This is clearly the case, since (1) the outcome will always be-
long to Z̄ = ��z1; z2� ∈ <2

+ � z1 ≤ z̄1; z2 ≤ z̄2� whenever �mini∈N τ1�ui�,
mini∈N τ2�ui�� ∈ Z̄ and (2) the outcome will belong to Z\Z̄ otherwise.
Hence, F is a social choice function onto Z.

Notice that, with the same “triangular” set, we can have different social
choice functions depending on (a) our choice of �z̄1; z̄2� within the “trian-
gular” set and (b) the choice of the right-coalition systems below those
critical values.

Notice also that the same construction could be generalized to m di-
mensions by taking any box-shaped set Z̄ contained in the “triangular” set,
requiring unanimity to get out of Z̄ and letting any generalized median
voter scheme within the bounds of Z̄. Moreover, the construction can eas-
ily be generalized to any convex set Z. Just take a box Z̄ inside Z, defined
by upper and lower bounds �zk; z̄k� for each dimension k, and take any
generalized median voter scheme defined by R and L∗ such that for all
k = 1; : : : ;m: L∗k�zk� = �N� for zk < zk and Rk�zk� = �N� for zk > z̄k.
We leave it for the reader to check that this generalized median voter
scheme induced by �Z;R� will be a strategy-proof social choice function
onto Z.

Finally, we present an example involving sets of quite arbitrary shape.
The purpose of the example is to show that, even in very strange cases,
full dictatorship is not a consequence of strategy proofness. Clearly, the
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functions we describe give a lot of power to one individual, and we do
not claim that they are attractive. But the example certainly proves that
sharp statements à la Gibbard–Satterthwaite are not to be expected in our
context, and that each individual decision problem attached to a feasible
set of alternatives Z will require its own careful examination.

Example 4. Let Z be any given compact set in <2 satisfying our full
dimensionality requirement. For our construction to work, we must be able
to find a box B = ��z1; z2� ∈ <2 �x1 ≤ z1 ≤ x̄1; x2 ≤ z2 ≤ x̄2� such that
for all elements z ∈ Z\B we have that all points in the segment between
z and the projection of z on B (call it Pr z) belong to Z. Figure 1 shows
that several such B can be found for a given, and rather complicated shape
of Z.

Now, consider the generalized median voter scheme induced by �Z;R�
where for k = 1; 2:

Rk�zk� =
{
S ⊆ N ∣∣ 1 ∈ S} for xk ≤ zk ≤ x̄k;

Rk�zk� = �N� for zk > x̄k;

FIGURE 1
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and

L∗k�zk� = �N� for zk < xk:

In words, agent 1 is a dictator on the set Z ∩ B and a unanimous decision
is required to go away from this set. Again, this is a globally nondictatorial
strategy-proof social choice function onto Z. As already stated, we do not
present this rule as a wonderful one. Rather, it is to make the point that
full dictatorship is hard to obtain.
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